

SIGNAL SEAL™

Reference AC Power Interface — Engineering Comparison (6 ft)

Executive Intent

Signal Seal™ is engineered as a **final-stage power interface** for professional audio systems.

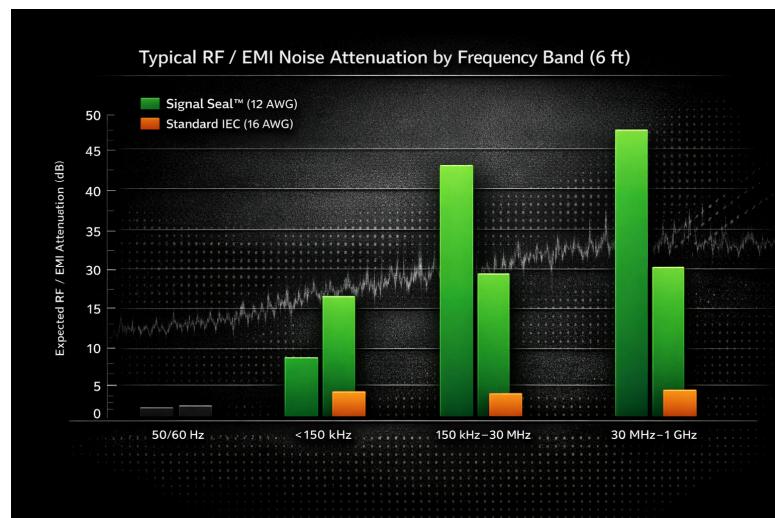
Its purpose is to reduce **RF interaction, common-mode noise coupling, and interface instability** in the final connection between already-regulated / balanced power systems and critical audio equipment.

This document presents a **physics-based comparison** against a standard 16-gauge pro-audio AC cord, focusing on measurable and defensible engineering outcomes.

Comparison Baseline

- **Signal Seal™:** Final-stage, RF-managed, mechanically stabilized power interface
- **Standard Pro-Audio AC Cord:** 16 AWG copper, unshielded, molded IEC connectors
- **Reference Length:** 6 ft

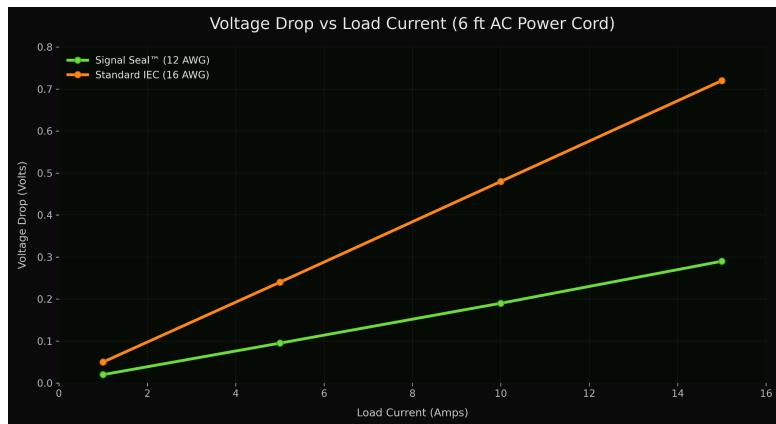
Key Engineering Advantages (Summary)


Area	Signal Seal™	Standard 16 AWG IEC
RF / EMI interaction	Substantially reduced	Minimal control
High-frequency noise coupling	Lowered	Higher
Voltage drop under load	Lower	Higher
Contact resistance stability	Higher	Variable
Micro-arching risk	Reduced	Higher
Mechanical retention	High	Moderate

RF / EMI Noise Interaction — Frequency Domain

Values shown represent typical attenuation ranges achievable by this class of construction when properly terminated. Results are installation- and impedance-dependent.

Frequency Band	Dominant Noise Sources	Signal Seal™ (Expected)	Standard IEC	Engineering Context
50 / 60 Hz	Mains fundamental	~0 dB	~0 dB	Low-frequency magnetic fields are addressed upstream via isolation and regulation.
<150 kHz	Harmonics, dimmer hash	~6–10 dB (situational)	~0–1 dB	Geometry and bonding reduce re-radiation; primary suppression occurs upstream.
150 kHz–30 MHz	SMPS switching noise (common-mode dominant)	~35–40 dB typical	~0–3 dB	Increased HF impedance and controlled reference reduce coupling in the final lead.
30 MHz–1 GHz	Radiated RF (Wi-Fi, cellular, broadcast)	~42–50 dB class	~0–5 dB	RF containment prevents the cable from acting as an antenna.



Attenuation values reflect coupling reduction and containment effects, not absolute source suppression.

Electrical Integrity — Voltage Drop vs Load (6 ft)

Metric	Signal Seal™	Standard IEC (16 AWG)
Round-trip resistance	~0.019 Ω	~0.048 Ω
Voltage drop @ 5 A	~0.095 V	~0.24 V
Voltage drop @ 10 A	~0.19 V	~0.48 V
Voltage drop @ 15 A	~0.29 V	~0.72 V
Power loss @ 10 A	~1.9 W	~4.8 W

Values calculated using standard AWG resistance data for comparative reference.

Connector Interface — Scientific Comparison

Most standard pro-audio IEC connectors use **brass contacts with nickel plating**. These materials are chosen primarily for durability and cost efficiency, not electrical performance.

Signal Seal™ employs a connector system optimized for **electrical conductivity, contact stability, and RF behavior** at the interface.

Interface Property	Signal Seal™	Standard IEC	Engineering Impact
Contact resistivity	Lower	Higher	Lower resistive loss and heat generation
Oxide behavior	Conductive	Resistive	Greater long-term stability
Contact pressure	High / controlled	Moderate	Reduced intermittent contact
RF surface impedance	Lower	Higher	Reduced RF reflection and injection
Retention force	High	Moderate	Less vibration-induced variability

Operational Reliability Under Dynamic Load

Micro-Arcing & Reliability

Micro-arching occurs at interfaces with marginal pressure, oxidation buildup, or mechanical movement—especially during current transients and inrush events.

Factor	Signal Seal™	Standard IEC
Micro-arching probability	Reduced	Higher
Load-change stability	High	Variable
Long-term consistency	High	Degrades with wear

Engineering Interpretation

Signal Seal™ is not a power conditioner, regulator, or isolation device. Instead, it addresses a known vulnerability: the **final connection**, where RF ingress, interface instability, and mechanical variability can re-introduce noise into otherwise well-managed power systems.

By improving RF containment, reducing high-frequency coupling, stabilizing electrical contacts, and lowering resistive losses under load, Signal Seal™ preserves the performance of upstream power infrastructure at the point where it matters most.

© STOS™ / Signal Seal™

STOS Signal Seal™ – Flagship Cable Sleeve

DIMENSIONS	
Overall Length	4.00 in (101.6 mm)
Internal Diameter (ID)	13.0 mm \pm 0.05 mm (Optimized for multi-layered shielded power cable assemblies)
Outer Diameter (OD)	19.0 mm \pm 0.05 mm
Wall Thickness	3.0 mm \pm 0.05 mm (Balanced for rigidity, damping, and visual mass without excess bulk)

FINISH & MACHINING	
Body Finish	Satin black anodized (low-reflectivity, fingerprint-resistant, premium matte appearance)
End Treatment	Precision chamfered ends – Chamfer depth: 0.5–0.75 mm – Edge finish: Polished

BRANDING	
Logo Application	CNC-engraved Silver fill (high-contrast, permanent)

A mechanically stable, precision-finished centerpiece designed to unify cable geometry, suppress micro-movement, and present a clear visual signature of the Signal Seal™ system.